EFFECT OF THERAPEUTIC ELECTRICAL STIMULATION ON PPTT IN HEALTHY SUBJECTS
pdf (Português (Brasil))

Keywords

Electrical stimulation
physical therapy modalities
pain tolerance

How to Cite

da Silva, J. H., Silva dos Santos, L. H., Vargas e Silva, N. O., Alfieri, F. M., Kümpel, C., & de Oliveira Lima, P. (2020). EFFECT OF THERAPEUTIC ELECTRICAL STIMULATION ON PPTT IN HEALTHY SUBJECTS: RANDOMIZED CLINICAL TRIAL. Life Style, 7(1), 26–33. https://doi.org/10.19141/2237-3756.lifestyle.v7.n1.p26-33

Abstract

The electrical stimulation (ES) modalities can be used to promote pain relief or to generate muscle strength. However, it is observed that there are few studies that analyze the Pressure Pain Tolerance Threshold (PPTT) in parameters that promote muscle strengthening. We aim to verify and compare PPTT after EE with parameters indicated for muscle strengthening in healthy patterns. For this, 51 women randomized into three groups participated (n = 17 each): RUSSIAN, AUSSIE and FES. ES was applied for 10 minutes with motor-level intensity to the right quadriceps muscle. The left quadriceps was used as a control. PPTT in the rectus femoris muscle was investigated by pressure algometry before, immediately after, 30 minutes after and 1 hour after electrostimulation. When compared to the control, the FES group shows a statistically significant increase in LTDP immediately after ES (p = 0.009), while the RUSSA group shows statistical difference 30 minutes after ES (p=0.007), but with a significant increase on the control side. In the AUSSIE group, there was no statistical difference between the sides in any of the evaluated hypotheses. Comparing the moments on the experimental side, the FES group shows a significant increase in PPTT immediately after and 30 minutes after ES (p=0.03). The other comparisons do not show independent differences. The data studied suggests that ES can increase PPTT through FES when parameters for muscular strengthening are applied.

https://doi.org/10.19141/2237-3756.lifestyle.v7.n1.p26-33
pdf (Português (Brasil))

References

ALMEIDA, N.; PALADINI, L. H.; PIVOVARSKI, M.; GAIDESKI, F.; KORELO, R. I. G.; MACEDO, A. C. B. Immediate analgesic effect of 2KHz interferential current in chronic low back pain: randomized clinical trial. BrJP. v. 2, n. 1, p. 27 – 33, 2019.

CAMBRIDGE, N.A. Electrical apparatus used in medicine before 1900. Procedures of the Royal Society of Medicine. v.70, n.9, p.635 – 641, 1977.

DAGTEKIN, O.; KÖNIG, E.; GERBERSHAGEN, H. J.; MARCUS, H.; SABATOWSKI, R.; PETZKE, F. Measuring pressure pain thresholds. Comparison of an electromechanically controlled algometer with established methods. Schmerz. v. 21, n. 5, p. 439 – 444, 2007.

DOUCET, B. M.; LAM, A.; GRIGGIN, L. Neuromuscular Electrical Stimulation for Skeletal Muscle Function. Yale Journal of Biology and Medicine. v. 85, n. 1, p. 201 – 215, 2012.

DOUNAVI, M. D.; CHESTERTON, L. S.; SIM, J. Effects of Interferential Therapy Parameter Combinations Upon Experimentally Induced Pain in Pain-Free Participants: A randomized Controlled Trial. American Physical Therapy Association. v. 92, n. 7, p. 911 – 923, 2012.

EGLOFF, N.; KLINGLER, N.; VON KÄNEL, R.; CÁMARA, R. J. A.; CURATOLO, M.; WEGMANN, B.; MARTI, E.; FERRARI, M. L. G. Algometry with a clothes peg compared to an electronic pressure algometer: a randomized cross-sectional study in pain patients. BMC Musculo skeletal Disorders. v. 12, p. 1471 – 2474, 2011.

FISCHER, A.A.; Pressure algometry over normal muscles: standard values, validity and reproducibility of pressure threshold. Pain, v. 30, p. 115 – 126, 1987.

FUENTES, J.; ARMIJO-OLIVO, S.; MAGEE, D. J.; GROSS, D. Does amplitude-modulated frequency have a role in the hypoalgesic response of interferential current on pressure pain sensitivity in healthy subjects? A randomized crossover study. Chartered Society of Physiotherapy. v. 96, n. 1, p. 22 – 29, 2010.

FUKUDA, T.Y.; MARCONDES, F.B.; RABELO, N.A.; VASCONCELOS, R.A.; JUNIOR, C.C. Comparison of peak torque, intensity and discomfort generated by neuromuscular electrical stimulation of low and medium frequency. Isokinetics and ExerciseScience. v.21, p.167–173, 2013.

IMAMURA, M.; IMAMURA, S. T.; KAZIYAMA, H. H.; TARGINO, R. A.; HSING, W. T.; DE SOUZA, L. P.; CUTAIT, M. M.; FREGNI, F.; CAMANHO, G. L. Impact of nervous system hyperalgesia on pain, disability, and quality of life in patients with knee osteoarthritis: a controlled analysis. Arthritis Rheum. v. 59, n. 10, p. 1424 – 1431, 2008.

KITCHEN, S. Eletroterapia: prática baseada em evidências. 11. ed. Barueri: Manole; 2003.

LACOURT, T. E.; HOUTVEEN, J. H.; VAN DOORNEN, L. J. P. Experimental pressure – pain assessments: test – retest reliability, convergence and dimensionalyty. Scandinavian Journal of Pain. v. 3, n. 1, p. 31 – 37, 2012.

LIMA, L. V.; CRUZ, K.M.L.; ABNER, T.S.S.; MOTA, C.M.D.; AGRIPINO, M.E.J.; SANTANA-FILHO, V.J. Associating high intensity and modulated frequency of tens delays analgesic tolerance in rats. Eur J Pain, v.19, n. 3, p. 369 – 376, 2015.

MORAN, F.; LEONARD, T.; HAWTHORNE, S.; HUGHES, C. M.; MCCRUM-GARDNER, E.; JOHNSON, M. I.; RAKEL, B. A.; SLUKA, K. A.; WALSH, D. M. Hypoalgesia in Response to Transcutaneous Electrical Nerve Stimulation (TENS) Depends on Stimulation Intensity. American Pain Society. v. 12, n. 8. p. 929 – 935, 2011.

NELSON, R.M.; HAYES, K.W.; CURRIER, D.P. Eletroterapia Clínica. 1. ed. Barueri: Manole. 2003.

PECKHAM, P.H.; KNUTSON, J.S. Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. v. 7, n. 1, p. 327–360, 2005.

PIOVESAN, E. J.; TATSUI, C. E.; KOWACS, P. A.; LANGE, M. C.; PACHECO, C.; WERNECK, L. C. Utilização da algometria de pressão na determinação dos limiares de percepção dolorosa trigeminal em voluntários sadios: um novo protocolo de estudos. Arq Neuropsiquiatr. v. 59, n. 1, p. 92 – 96, 2001.

ROBERTSON, V.; WARD, A. R.; LOW, J.; REED, A. Eletroterapia explicada: princípios e prática. 4. ed. Rio de Janeiro: Elsevier; 2011.

SILVA, B. C.; CORACINI, C. A.; BRANCO, C. L.; MICHELON, M. D.; BERTOLINI, G. R. F. Aussie current in students with chronic neck pain: a randomized controlled trial. Br J Pain. v. 1. n. 3, p. 202 – 206, 2018.

VENANCIO, R. C.; PELEGRINI, S.; GOMES, D. Q.; NAKANO, E. Y.; LIEBANO, R. E. Effects of Carrier Frequency of Interferential Current on Pressure Pain Threshold and Sensory Comfort in Humans. Archives of Physical Medicine and Rehabilitation. v. 94, n. 1, p. 95 – 102, 2013.

WARD, A.R.; OLIVER, W.G.; BUCCELLA, D. Wrist extensor torque production and discomfort associated with low-frequency and burst-modulated kilohertz-frequency currents. Physical Therapy. v. 86, n. 10, p. 1360 – 1367, 2006.

WARD, A.R.; ROBERTSON, V.J.; IOANNOU, H. The effect of duty cycle and frequency on muscle torque production using kilohertz frequency range alternating current. Med Eng Phys. v. 26, n. 7, p. 569 – 579, 2004.

WARD, A.R.; SHKURATOVA, N. Russian electrical stimulation: the early experiments. Physical Therapy. v.82, n.10, p.1019 – 1030, 2002.

WARD, A. R.; CHUEN, W.L.H. Lowering of sensory, motor, and pain-tolerance thresholds With burst duration using kilohertz-frequency alternating current electric stimulation: part II. Arch Phys Med Rehabil. v. 90, n. 1, p. 1619 – 1627, 2009.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Life Style

Downloads

Download data is not yet available.